THE FORMATION AND ALKYLATION OF α -KETOAMIDE DIANIONS Emil R. Koft* and Michael D. **Williams** Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180-3590

SUMMARY: Alpha ketoamides may be deprotonated twice with stronq base. The dianions so formed react with alkyl halides to yield α -amido tertiary alcohols.

The extended enolates of crotonic acid derivatives^{1a,b} have become valuable reactive intermediates in the preparation of β, γ -unsaturated carbonyl compounds via α -alkylation with electrophiles. During the course of our investigation of the kinetic aldol reactions of α -

ketoamide enolates $2,^2$ it occurred to us that the addition of a second equivalent of base might produce the potentially useful dianionic species $4.3,4$

In practice, addition of ketoamides 1^{5} to 2.2 equivalents of LDA.HMPA⁶ in THF at -78°C followed by warming to 0°C for 20-30 min. and addition of an alkyl halide produced tertiary alcohols 5⁷ in moderate yields (see Table). Reaction at the y-carbon to produce compounds of type 6 was observed only with the mixed K-Li enolate (entry 2). The net operation of Y alkylation with allyl bromide could also be achieved via Cope rearrangement of α -product 5c: Treatment of this compound with NaH in THF for 7 h at reflux afforded 1d in 72% yield after proton quench.

TABLE

entry	Ketoamide	deprotonation conditions	electrophile	product, yield*
$\mathbf{1}$	o NEt, Ο 1a	LDA/HMPA/THF -78° \rightarrow 0°C	Mel	ဂူ Me NEt, HQ 5a, 62% (84%)
\overline{c}	$\overline{\mathbf{a}}$	1) KH/THF, 0° 2) $LDA, -78 + 0^d$	Mel	5a, 43% 1b, 32%
3	$\underline{1a}$	LDA/HMPA/THF $-78^\circ + 0^\circ C$	n -Pr Br	ဂူ $n \cdot Pr$ NEt, HÓ 5b, 60%
4	1a	LDA/HMPA/THF $-78^\circ \div 0^\circ C$	Br	ဂူ NEt, HQ 5c, 67%
5	$\underline{\mathbf{a}}$	LDA/HMPA/THF -78° + 0°		o NEt, HQ 5d, 29%
6	o NE _t ∬ Ö 1 _b	LDA/HMPA/THF -78° + 0°	Mel	ဂူ Мe NEt, НÓ 5e, 38% (60%)
$\overline{7}$	Q H О 1c OMe	LDA/HMPA/THF -78° + 0°	Mel	\mathbf{o} HO. Me MeO 5f, 39%

*yields in parenthesis were calculated allowing for recovered ketoamide.

Dianions 4 appear to be thermally unstable and slowly decompose at temperatures required for their formation from 1. With LDA as a base, starting ketoamide could always be recovered from the reaction mixture; longer deprotonation times or higher temperatures led to increased consumption of starting material at the expense of overall yield. The use of lithium tetramethvlpiperidide (LiTMP) as a base resulted in complete deprotonation at -1O'C without the use of HMPA (no recovered ketoamide), but overall yields were not significantly improved. The high basicity of dianions 4 is evidenced by the predominant dehvdrohaloqenation of homoallyl halides (entry 5, Table); likewise, attempted alkylation with benzyl bromide gave recovered ketoamide plus stilbene.

A reasonable level of asymmetric induction was obtained with the alkvlation of chiral amide $1c$, 5.7 Reduction of $5f$ (as a mixture of diastereomers) with one equivalent of Red-Al followed by NaBH₄ afforded the known diol 2^8 [α] $_{\Omega}^{22}$ = +4.844° (C = 3.0 in CH₂C1₂) in 63% vield. A chiral shift NMR experiment using Eu(tfc)₃ confirmed the value of 75% e.e. for this material. If the alkylation of ic occurs in the same facial sense as that of enolate 8, 9 then the geometry of the dianionic species must be that shown by $\underline{4}$ and $\underline{9}$.

Also noteworthy is the clean production of the trans olefin from deprotonation of <u>1b</u> (entry 6), as determined by a 15 Hz olefinic J value for $5e$. This result can be rationalized by γ -deprotonation occurring from the least sterically crowded rotamer of the \underline{z}^{10} monoenolate 10. Interestingly, this is the opposite geometry obtained from deprotonation of α , β unsaturated esters.¹¹

Application of this methodology to problems in natural products synthesis is underway in our laboratory.

Acknowledgment: The authors wish to thank the Rensselaer Polytechnic Institute Science Initiatives Program for financial support of this work.

- 1. (a) For a recent review of the enolate chemistry of α , β -unsaturated acids and esters, see: N. P. Petragnani and M. Yonashiro, Synthesis 521, pp. 555-562 (1982). (b) α,β unsaturated amides: J. A. Oakleaf, M. T. Thomas, A. Wu, and V. Snieckus, <u>Tetr. Lett.</u>, 645 (1978).
- 2. The results of these investigations will be published in due course.
- 3. This type of α -dicarbonyl dianion is apparently unknown. However, for studies on 1,3cyclohexadien-2,3-diolates, see: A. S. Kende and R. G. Eilerman, Tetr. Lett., 697 (1973). M. Takata, M. Hojo, and A. Takeda, Chem. Lett., 445 (1984).
- 4. α -alkyl and aryl enediolates have been produced from the appropriate α -hydroxyesters: L. J. Ciochetto, D. E. Bergbreiter, and M. Newcomb, J. Org. Chem. 42, 2948 (1977).
- 5. Ketoamides used in this study were prepared from the appropriate secondary amine, diethyl oxalate, and ethyl or propylmaqnesium bromide: T. Coviqny, M. Larcheveque, and H. Normant, Synthesis, 857 (1978).
- 6. J. L. Herrmann, G. R. Kieczykowski, and R. H. Schlessinger, Tetr. Lett., 2433 (1973).
- 7. All new compounds were characterized by 200 MHz 1 H NMR, IR and mass spectrometry.
- 8. Lit. $\lceil \alpha \rceil^2$ = +6.47° (C = 5.6 in CH₂Cl₂): E. L. Eliel and K. Soai, <u>Tetr. Lett.</u>, 2859 LIT. $\begin{bmatrix}a_{11} & -b_{1}a_{1} & c_{1}b_{1} & c_{1}$ mevalolactone.
- 9. D. A. Evans and J. M. Takacs, Tetr. Lett., 4233 (1980).
- 10. This geometrical assignment is consistent with our observation that monoenolates of α ketoamides qive syn aldol products 3.2
- 11. A. S. Kende and B. H. Toder, <u>J. Org. Chem. 4</u>7, 163 (1982).

(Received in USA 7 March 1986)